
ESOP – Simple Programs

Assoc. Prof. Dr. Mathias Lux

ITEC / AAU

Agenda

• Symbols

• Variables, Constants

• Assignments

• Operators

Quelle für die folgenden Folien: Grundlagen der Programmierung, Prof. Dr. Hanspeter Mössenböck

Symbols: names

Naming of variables, types, functions, etc.
within a program.

• consist of letters, digits and ‚_‘

• always start with a letter

• arbitrary length

• case sensitive

• Examples
– x, x17, my_Var, myVar

Symbols: key words

• Name key parts of the program

• cannot be used as names

• Examples:

– if, while, for, enum, class, static, ...

Symbols: numbers

• Discrete numbers
– (decimal or hexadecimal)

• Floating point numbers

• Examples
– 376 ... decimal

– 0x1A5 ... hexadecimal

– 3.14 ... floating point

Symbols: strings

• Any strings between quotation marks.

• Must not exceed end of lines

• " needs to be excaped to \"

• Examples

– "a simple string"

– "she said \"Hallo\""

Symbols: strings

• String

– in Java not a base data type but an onject.

• char ... single Unicode letter

– 2 Bytes

– simple apostrophe, eg. ‘L’, ‘)’, ...

Declaration of variables

• Each variable must be declared before

use

– Name and type are given to the compiler

– Compiler allocates memory

• Examples:

– int x; ... declares variable x of type int (integer)

– short a, b; ... declares two variables of type
short (short integer)

Integer types

byte 8 bit -2^7 .. 2^7-1 (-128 .. 127)

short 16 bit -2^15 .. 2^15-1 (-32.768 .. 32.767)

int 32 bit -2^31 .. 2^31-1 (-2.147.483.648 ..)

long 64 bit

• Declaration & initialisation
– int x = 100;

declares integer x and assign value of 100.

– short a = 0, b = 1;
declares two short variables with initial values.

Constants

• Init variables that cannot be changed later
– static final int max = 100;

• Why would you do that?
– readability

• max easier to read than 100

– maintainability
• if the same value is used several times.

• Constants are declared in class scope

– will be explained later in the course

Comments

• line comments
– Start with // .. and with end-of-line (EOL)

• block comments
– use /* ... */, can span over multiple lines.

• Comments & Readability
– comment for later

understanding
– do not comment what‘s

obvious

Language for

comments and names

• Think about your audience

– English is better than German

• Do not mix languages!

• Special care with

– swear words, email adresses, people names,
licenses!

Choice of

variables and constants

• Coding conventions exist for

– readability of code

– maintainability and preservation

• Naming conventions see:
http://www.oracle.com/technetwork/java/javase/documentation/codeconventions-135099.html#367

• Tipps:

– Names that make sense (cp. comments)

– Better shorter than longer (cp. support by IDE).

No good naming ..

Assignments

• left and right side have to be compatible
– either the same type (int, byte, ...)

– or type left  type right

• hierarchy of integer types
– long  int  short  byte

1. compute statement

2. store in variable

statementvariable

Assignments

• Examples

int i, j; short s; byte b;

i = j; // ok: same type

i = 300; // ok (numeric expressions are int)

b = 300; // not ok: 300 > byte

i = s; // ok

s = i; // not ok

Static Type Check

• Compiler checks:

– variables stay in allowed value range.

– operators are applied on the right types / values.

Arithmetic Expressions

• Simplified grammar

Expr = Operand {BinaryOperator Operand}.

Operand = [UnaryOperator] (identifier | number | "(" Expr ")").

• eg. - x + 3 * (y + 1)

Arithmetic Expressions

• Binary Operators

• Unary operators

+ sum

- subtraction

* multiplikation

/ division 5/3 = 1

% modulo 5%3 = 2

+ identity (+x) = x

- invert sign

Types in Arithmetic

Expressions

• Order of operations
– multiplication and division (*, /, %) over addition and

subtraction (+, -)
• eg. 2 + 3 * 4 = 14

– left association
• eg. 7 - 3 - 2 = 2

– unary operators over binaray operators
• eg.: -2 * 4 + 3 ergibt -5

• Resulting types
– input type can be byte, short, int, long
– resulting type

• if one operand is long -> result is type long,
• otherwise -> type int

Examples

short s; int i; long x;

x = x + i; // long

i = s + 1; // int (1 is int)

s = s + 1; // false!

s = (short)(s + 1); // type cast necessary

Type Cast

(type) expression

• changes expression to type

• result can be truncated

Increment / Decrement

• access variable plus operation
– x++ ... returns x and then adds +1
– ++x ... adds 1 to x and then returns x
– x-- , --x ... the same with subtraction.

• can be a statement on ist own right
– x = 1; x++; // x = 2 the same as: x = x + 1;

• examples
– x = 1; y = x++ * 3; // x = 2, y = 3 is: y = x * 3; x = x + 1;
– x = 1; y = ++x * 3; // x = 2, y = 6 is: x = x + 1; y = x * 3;

• only works on variables, not expressions.
– y = (x + 1)++; // wrong!

The power of two (shifts)

Shift-operators allow for efficient multiplication

and division by powers of two.

Division only works out

for positive numbers.

The power of two (shifts)

Examples

Assignment operators.

• arithmetic operations can be combined

with assignments.

check http://docs.oracle.com/javase/specs/jls/se8/html/jls-15.html#jls-15.26

short long

http://docs.oracle.com/javase/specs/jls/se8/html/jls-15.html#jls-15.26

String Operators

• Strings can be concatenated with ‘+’

– “Mathias” + “ “ + “Lux”

• Other operators do not apply

– Especially not comparisons

– “Mathias” != “Lux” ... checks addresses!

Bit Operators

• Bits of operands are modified
– Example(Java uses two‘s complement)

• byte a = 17; // 00010001
• byte b = 7; // 00000111

• Supported operations
– Disjunction:

• byte or = a | b; // 23

– Conjunction:
• byte and = a & b; // 1

– Antivalence:
• byte xor = a ^ b; // 22

– Complement:
• byte notB = ~b; // -8

Java-Programs

class ProgramName {

public static void main (String[] arg) {

... // Declarations

... // Statements

}

}

// Example:

class Sample {

public static void main (String[] arg) {

int a = 23;

int b = 100;

System.out.print("Sum = ");

System.out.println(a + b);

}

}

Text has to be in file named
ProgramName.java

Compile and Run with JDK

• Compile
– C:\> cd MySamples

change to source file

– C:\MySamples> javac Sample.java
create class file (compile)

• Execute
– C:\MySamples> java Sample

run class file

– Sum = 123

Example: IDEA IDE

• Strings, comments and variables

– Spell check, consistency, type check

• Live Templates

– psvm + <tab>

• Automated naming of Variables

– <Strg>-<Space>

